
University of Minnesota

Co-Array Fortran
What is it? Why should you put it

on BlueGene/L?

Robert W. Numrich

Minnesota Supercomputing Institute
University of Minnesota

rwn@msi.umn.edu

2
University of Minnesota

The Guiding Principle behind
 Co-Array Fortran

• What is the smallest change required to make
Fortran 90 an effective parallel language?

• How can this change be expressed so that it
is intuitive and natural for Fortran
programmers?

• How can it be expressed so that existing
compiler technology can implement it easily
and efficiently?

3
University of Minnesota

What’s the Problem with SPMD?

• One processor knows nothing about
another’s memory layout.
– Local variables live on the local heap.
– Addresses, sizes and shapes are different on

different program images.
• How can we exchange data between such

non-aligned variables?

4
University of Minnesota

Co-Array Fortran Extension
• Incorporate the SPMD Model into Fortran 90

– Multiple images of the same program
– Text and data are replicated in each image

• Mark some variables with co-dimensions
– Co-dimensions behave like normal dimensions
– Co-dimensions express a logical problem

decomposition
– One-sided data exchange between co-arrays using a

Fortran-like syntax
• Require the underlying run-time system to map the

logical problem decomposition onto specific
hardware.

5
University of Minnesota

The CAF Execution Model

• The number of images is fixed and each image has its
own index, retrievable at run-time:
 1 £ num_images()
 1 £ this_image() ≤ num_images()

• Each image executes the same program independently
of the others.

• The programmer inserts explicit synchronization and
branching as needed.

• An “object” has the same name in each image.
• Each image works on its own local data.
• An image moves remote data to local data through, and

only through, explicit CAF syntax.

6
University of Minnesota

What is Co-Array Syntax?

• Co-Array syntax is a simple extension to
normal Fortran syntax.
– It uses normal rounded brackets () to point to data

in local memory.
– It uses square brackets [] to point to data in

remote memory.
– Syntactic and semantic rules apply separately but

equally to () and [].

7
University of Minnesota

Examples of Co-Array Declarations

real :: s[*]
real :: a(n)[*]
complex :: z[*]
integer :: index(n)[*]
real :: b(n)[p, *]
real :: c(n,m)[0:p, -7:q, 11:*]
real, allocatable :: w(:)[:]
type(field) :: maxwell[p,*]

8
University of Minnesota

CAF Memory Model

x(1)

x(n)

x(1)

x(n)

x(1)[q]

p q

x(n)[p]

x(1)

x(n)

x(1)

x(n)

x(1)

x(n)

9
University of Minnesota

One-to-One Execution Model

x(1)

x(n)

x(1)

x(n)

x(1)[q]

p q

x(n)[p]

x(1)

x(n)

x(1)

x(n)

x(1)

x(n)

One
Physical
Processor

10
University of Minnesota

Many-to-One Execution Model

x(1)

x(n)

x(1)

x(n)

x(1)[q]

p q

x(n)[p]

x(1)

x(n)

x(1)

x(n)

x(1)

x(n)

Many
Physical

Processors

11
University of Minnesota

One-to-Many Execution Model

x(1)

x(n)

x(1)

x(n)

x(1)[q]

p q

x(n)[p]

x(1)

x(n)

x(1)

x(n)

x(1)

x(n)

One
Physical
Processor

12
University of Minnesota

Many-to-Many Execution Model

x(1)

x(n)

x(1)

x(n)

x(1)[q]

p q

x(n)[p]

x(1)

x(n)

x(1)

x(n)

x(1)

x(n)

Many
Physical

Processors

13
University of Minnesota

What Do Co-Dimensions Mean?
 real :: x(n)[p,q,*]

• Replicate an array of length n, one on each image.
• Build a map so each image knows how to find the

array on any other image.
• Organize images in a logical (not physical) three

dimensional grid.
• The last co-dimension acts like an assumed size

array: * fi num_images()/(pxq)
• A specific implementation could choose to represent

memory hierarchy through the co-dimensions.

14
University of Minnesota

Relative Image Indices (1)

161284

151173

141062

139511

2

3

4

1 2 3 4

 this_image() = 15 this_image(x) = (/3,4/)x[4,*]

15
University of Minnesota

Relative Image Indices (II)

161284

151173

141062

139510

1

2

3

0 1 2 3

 this_image() = 15 this_image(x) = (/2,3/)x[0:3,0:*]

16
University of Minnesota

Relative Image Indices (III)

161284

151173

141062

13951-5

-4

-3

-2

0 1 2 3

 this_image() = 15 this_image(x) = (/-3, 3/)x[-5:-2,0:*]

17
University of Minnesota

Relative Image Indices (IV)

161412108642

15131197531
0

1

0 1 2 3 4 5 6 7

x[0:1,0:*] this_image() = 15 this_image(x) =(/0,7/)

18
University of Minnesota

Communication Using CAF Syntax
y(:) = x(:)[p]

myIndex(:) = index(:)
yourIndex(:) = index(:)[you]

x(index(:)) = y[index(:)]

x(:)[q] = x(:) + x(:)[p]

Absent co-dimension defaults to the local object.

19
University of Minnesota

Irregular and Changing Data
Structures

z%ptr z%ptr

x
x

z[p]%ptr

20
University of Minnesota

Matrix Multiplication

= x
myP

myQ

myP

myQ

real,dimension(n,n)[p,*] :: a,b,c
(/myP,myQ/) = this_image(c)

21
University of Minnesota

Matrix Multiplication

real,dimension(n,n)[p,*] :: a,b,c

do k=1,n
 do q=1,p

c(i,j)[myP,myQ] = c(i,j)[myP,myQ]
 + a(i,k)[myP, q]*b(k,j)[q,myQ]

 enddo
enddo

22
University of Minnesota

Matrix Multiplication

real,dimension(n,n)[p,*] :: a,b,c

do k=1,n
 do q=1,p

c(i,j) = c(i,j) + a(i,k)[myP, q]*b(k,j)[q,myQ]
 enddo
enddo

23
University of Minnesota

 Matrix Multiplication

24
University of Minnesota

Communication for LU
Decomposition

• Row interchange
– temp(:) = a(k,:)
– a(k,:) = a(j,:) [p,myQ]
– a(j,:) [p,myQ] = temp(:)

• Row “Broadcast”
– L0(i:n,i) = a(i:,n,i) [p,p] i=1,n

• Row/Column “Broadcast”
– L1 (:,:) = a(:,:) [myP,p]
– U1(:,:) = a(:,:) [p,myQ]

25
University of Minnesota

LU Decomposition

26
University of Minnesota

A Parallel “Class Library” for CAF
• Combine the object-based features of Fortran 90

with co-array syntax to obtain an efficient parallel
numerical class library that scales to large
numbers of processors.

• Encapsulate all the hard stuff in modules using
named objects, constructors,destructors, generic
interfaces, dynamic memory management.

• Based on Vector Maps designed to support
redistribution of data for load balancing, adaptive
mesh refinement, etc.

27
University of Minnesota

Run-time System Support for CAF
• Compiler decodes CAF syntax and determines the processor (thread,

process, node) where the data lives
• Compiler hands this information to a communication protocol

– Global virtual address space: use load/store instructions
• Higher-order bits in address: remote = local + shift(p)
• Virtual offset: remote =local + offset(p)
• Table lookup: remote = remote(p)

– Implement on one BG/L compute node as proof-of-concept?
– Interface to a one-sided communication library

• Armci, Shmem, Lapi, Quadrics elan, Myrinet GM-2, MPI-2, Active
messages

• Dynamic memory management for co-arrays
• Fast barriers
• Cache coherence (invalidate on sync?)
• Optimal logical to physical mapping (simulated annealing?)

28
University of Minnesota

The Co-Array Fortran Standard

• Co-Array Fortran is defined by:
– R.W. Numrich and J.K. Reid, “Co-Array Fortran for

Parallel Programming”, ACM Fortran Forum,
17(2):1-31, 1998

• Additional information on the web:
– www.co-array.org
– www.pmodels.org

29
University of Minnesota

Why Language Extensions?
• Programmer uses a familiar language.
• Syntax gives the programmer control and

flexibility.
• Compiler concentrates on local code

optimization.
• Compiler evolves as the hardware evolves.

– Lowest latency and highest bandwidth allowed by
the hardware

– Data ends up in registers or cache not in memory
– Arbitrary communication patterns
– Communication along multiple channels

